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Large-eddy simulations of temporally evolving turbulent mixing layers have been
carried out. The effect of the initial conditions and the size of the computational box
on the turbulent statistics and structures is examined in detail. A series of calculations
was initialized using two different realizations of a spatially developing turbulent
boundary-layer with their free streams moving in opposite directions. Computations
initialized with mean flow plus random perturbations with prescribed moments were
also conducted. In all cases, the initial transitional stage, from boundary-layer tur-
bulence or random noise to mixing-layer turbulence, was followed by a self-similar
period. The self-similar periods, however, differed considerably: the growth rates
and turbulence intensities showed differences, and were affected both by the initial
condition and by the computational domain size. In all simulations the presence of
quasi-two-dimensional spanwise rollers was clear, together with ‘braid’ regions with
quasi-streamwise vortices. The development of these structures, however, was differ-
ent: if strong rollers were formed early (as in the cases initialized by random noise),
a well-organized pattern persisted throughout the self-similar period. The presence of
boundary layer turbulence, on the other hand, inhibited the growth of the inviscid
instability, and delayed the formation of the roller–braid patterns. Increasing the
domain size tended to make the flow more three-dimensional.

1. Introduction
Mixing layers that form between two fluid streams moving with different velocities

have been studied both in experiments and simulations for about sixty years. These
studies cover a wide range of Reynolds numbers, velocity ratios, and upstream con-
ditions. The motivation behind this continuous effort is not only the technological
importance of these flows, but also the rather large disparity in the results obtained
in what was initially thought to be a fairly simple flow with a predictable asymptotic
behaviour. Determination of the asymptotic behaviour of the mean flow was first at-
tempted by Kuethe (1935), using Prandtl’s mixing length to model the Reynolds shear
stress term in the boundary layer equations that approximately describe this flow. A
solution that better fits the single-stream mixing layer experimental data of Reichardt
(1942) was found by Görtler (1942) using Prandtl’s constant eddy viscosity hypothesis.
They, and many others, have shown that for sufficiently high Reynolds numbers, the
equations governing the development of a plane mixing layer can yield ‘self-similar’
solutions. Self-similarity is characterized by linear growth of the layer, and mean
velocities and turbulent statistics that are independent of the downstream distance
when normalized by appropriate length and velocity scales. Another characteristic
of mixing layers is the presence of large-scale organized structures, whose size is
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comparable with the transverse length scale of the flow. Although explicit recognition
of the presence and role of organized structures in turbulent flows was apparent
earlier (see Cantwell 1981 for a review), it was the Brown & Roshko (1974) flow
visualizations that dramatically showed the presence of apparently two-dimensional
structures in turbulent mixing layers. Since then, a large number of studies directed
toward determining the origin and dynamical significance of coherent structures in
mixing layers has been conducted.

Despite the progress made, however, several areas of confusion still remain. There
is a large variation in the results among the different experimental studies (see Brown
& Roshko 1974 and Dimotakis 1991 for summaries of the experimental results), even
when the parameters of the mean flow, including the velocity ratios, are nominally
the same. Dimotakis & Brown (1976) suggested that this variation is due to different
upstream conditions, namely whether or not the boundary layers at the trailing
edge of the splitter plate are laminar or turbulent. For laminar and turbulent initial
conditions, given sufficient downstream distance, the layer will become self-similar. In
the former case, however, this state is preceded by transition from laminar to turbulent
flow (mixing transition); in the latter, transition from boundary-layer turbulence to
mixing-layer turbulence occurs before self-similarity. In an experimental study of a
single-stream mixing layer, Bradshaw (1966) showed that the asymptotic growth rate
for the case with a turbulent boundary layer is higher than for a laminar one. Later
experiments performed by Batt (1975) and Hussain & Zedan (1978) confirmed this
result. Moreover, in Batt’s experiment the growth rates reported in the experiments
of Liepmann & Laufer (1947) (laminar boundary layer) and Wygnanski & Fiedler
(1970) (turbulent boundary layer), which differed by 30%, could be reproduced by
tripping or not tripping the boundary layer in the same apparatus.

In two-stream mixing layers, upstream conditions were also found to affect the
results. Contrary to single-stream experiments, however, the asymptotic growth rates
were higher when the boundary layers at the end of the splitter plate were laminar,
than when they were turbulent (see for example, Browand & Latigo 1979; Metha
& Westphal 1986; Bell & Metha 1990). In the Bell & Mehta (1990) experiment
the measured growth rates for the tripped and untripped cases differed by 25%,
while mean velocities and turbulent quantities were found to collapse within 10%
when plotted in similarity coordinates. However, the peak of the secondary shear
stress (streamwise–spanwise component), which can be associated with the presence
of streamwise rib vortices, was found to decay slowly for the untripped case. This
indicated that, although self-similarity was achieved for most quantities, the detailed
flow structure could be different. This is also supported by the experimental results of
Slessor, Bond & Dimotakis (1998). They studied the effect of initial conditions in two-
stream turbulent mixing layers by tripping one or both boundary layers on the splitter
plate. It was found that both the mixing layer growth and the molecular mixing, phe-
nomena associated with the large- and small-scale structure respectively, were affected
by the upstream conditions. Their colour schlieren visualizations, although obscuring
the local structures due to the optical integration in the spanwise direction, indicate
a clear decrease in the two-dimensional organization of the flow in the tripped case.

The experimental studies mentioned above point to the possibility that mixing
layers may achieve asymptotic self-preserving states that are not independent of their
initial conditions, and thus are not unique. A similar behaviour has been observed in
other free-shear flows as well. Wygnanski, Champagne & Marasli (1986) for example,
reported very different growth rates for wakes behind a cylinder, an airfoil and a
screen, all with the same drag coefficient (and thus momentum thickness) and aspect
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ratio. All these wakes appeared to be self-preserving. A theoretical explanation for this
finding was given by George (1989). He applied similarity analysis to the equations
governing the mean flow and Reynolds stresses for the case of a plane jet and showed
that, for sufficiently high Reynolds numbers, self-similar solutions were possible for all
turbulent quantities. The asymptotic power-law behaviour obtained for the Reynolds
stresses, however, was found to depend on the initial state of the source of the jet.

The exact mechanisms producing such differences and the role of coherent structures
in this process are not well understood. For laminar boundary layer initial conditions
it is known that two-dimensional rollers form that are unstable to sub-harmonic
disturbances, leading to pairing (see Ho & Huerre 1984 for a review). These initially
two-dimensional rollers are also unstable to three-dimensional disturbances that result
in their bending and in the concurrent formation of rib vortices in the ‘braid’ regions
between the rollers (e.g. in Lasheras & Choi 1988 and Rogers & Moser 1992). Spanwise
rollers have also been observed in the later stage turbulent region of the mixing layer,
where they coexist with a fine-scale motion. These structures are evident in several
experimental studies for a wide range of Reynolds numbers (e.g. in Dimotakis &
Brown 1976 and Hussain & Zaman 1985). Their dynamics appear to be similar to
those of their laminar counterparts, although there is some uncertainty related to the
pairing mechanism and the formation of rib vortices.

In addition to the initial conditions, in experimental studies the apparatus can have
a significant influence on the results. Large-scale acoustic or pressure feedback effects
can change the evolution of the flow. Dziomba & Fiedler (1985) suggested that even
very weak perturbations caused by the apparatus may result in significant differences
in the spreading rate. They also found that this effect is larger when the boundary
layers on the splitter plate are turbulent. Sidewall effects can also be considerable.
Hussain (1980) suggested that spanwise coherence of rollers in some experiments could
be due to organization by sidewalls. Weisbrot, Einav & Wygnanski (1982) found that
even for mixing layers with the same velocity ratio and initialized with laminar bound-
ary layers, the growth rate in the self-similar region varied significantly depending
on the absolute level of the free-stream velocities. They attribute this to a Strouhal
number effect arising from frequencies inherent in the facility. Oster & Wygnanski
(1982) found that a unique self-similar state was never attained for the two-stream
mixing layers with forced, very low-amplitude perturbations at the splitter plate.

Numerical simulations, which can be conducted in an accurately controlled environ-
ment, are a valuable tool in addressing some of the issues raised above. Simulations
are free from various uncontrollable parameters which make the interpretation of
different experiments difficult, and can be complementary to currently available ex-
perimental results. They can also provide detailed quantitative information on the
evolution and dynamics of coherent structures. To avoid the difficulties associated
with the imposition of the inflow condition and the computational expense due to the
significant length required to develop self-similar states, most numerical simulations
of mixing-layer flows performed to date have been temporal simulations. Periodic
boundary conditions are applied in the streamwise and spanwise directions, and the
flow is allowed to develop in time. If Taylor’s hypothesis holds, one can then relate
time to space through a Galilean transformation with an appropriate convection
velocity. In most of these temporal simulations the base flow was assumed to be a
hyperbolic tangent profile, with superimposed two- or three-dimensional disturbances.
Several simulations of this type, which resemble experiments with laminar incoming
boundary layers, have been reported in the literature (see, for instance, Riley &
Metcalfe 1980; Vreman, Geurts & Kuerten 1997; Comte, Silvestrini & Bégou 1998).
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These studies gave valuable quantitative information on the fundamental mechanisms
underlying the formation and dynamics of coherent structures and their effect on
turbulent statistics in transitional mixing layers.

There are fewer simulation studies where the boundary layers on the splitter plate
are turbulent, on the other hand. Rogers & Moser (1994) performed a temporal
direct numerical simulation (DNS) starting from two different realizations of a
turbulent boundary layer with their free streams moving in opposite directions. In their
computation, which has many characteristics resembling experiments with incoming
turbulent boundary layers, the flow also became self-similar after an initial transient.
Statistical properties of the simulated velocity field during self-similarity agreed well
with experiments at similar Reynolds numbers. While their results suggest that there
may be alternating or non-unique self-similar states, they do not indicate whether
such states are temporary or persist indefinitely, because of the limited time evolution
of the flow in a limited computational domain. Given the cost of DNS further
integration in time on a larger computational box would be prohibitively expensive.

The objective of the present study is to complement the numerical simulations of
Rogers & Moser (1994) and the experimental work on the effect of initial conditions
on turbulent mixing layers (e.g. Slessor et al. 1998), by providing both quantitative
and qualitative information on the development of the self-similar states, and on the
influence of initial and boundary conditions on this development. Compared with
the DNS, the present large-eddy simulation (LES) investigation can explore a larger
range of parameters, given the reduced cost of such computations. Compared with
experiments, we are able to visualize the turbulent eddies in greater detail, compared
with the smoke visualization or schlieren methods used in the literature. First, we
will clarify the findings of the DNS by Rogers & Moser (1994) above, regarding the
uniqueness or not of the self-similar states of unforced mixing layers, by removing
the ambiguity introduced by the limited extent of the computational box in the
streamwise and spanwise directions. Having established that, we will focus on the
effect of the initial conditions on the evolution of the layer. This type of study can be
complementary to existing experimental and DNS studies, and, in addition to flow
statistics, it can provide accurate quantitative information on the role and dynamics
of coherent structures in the establishment of self-similar states for different upstream
conditions.

For this purpose several calculations were carried out using different initial condi-
tions and computational domains, the largest one being four times the size of that
employed in the DNS of Rogers & Moser (1994). A parametric study of this sort using
DNS would be prohibitively expensive, given the size of the computational domain.
The LES approach is an accurate tool to study the dynamics of free shear layers
(see, for instance, Ghosal & Rogers 1997; Vreman et al. 1997; Comte et al. 1998),
particularly if small-scale information is not required. The large scales are resolved
directly like in a DNS, while the small scales are modelled through a subgrid-scale
(SGS) model. However, although LES gives us the possibility to study free shear flows
in larger computational boxes at higher Reynolds numbers, significant errors can be
introduced by the SGS model. It is thus necessary to use appropriate SGS models
for the specific flow case and proper numerical resolution in order to minimize these
errors. For this reason, in the framework of the present study, a computation which
resembles as closely as possible the DNS (matching initial conditions and compu-
tational domain size) was conducted first. The influence of the numerical resolution
and SGS model on the statistical quantities of interest and coherent structures were
quantified, so that a series of computations with different domain sizes and initial con-
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ditions could be carried out with confidence. A similar approach had been followed by
Ghosal & Rogers (1997), in conducting LES of turbulent plane wakes. The DNS of
Moser, Rogers & Ewing (1998) for the same flow was used as a reference case. From
their simulations it is evident that LES can reproduce with accuracy most turbulent
statistics of interest as well as the dynamics of coherent structures when compared
with DNS for the same conditions (initial and boundary conditions, domain size).
Moreover, their computations on larger domains showed that this parameter can
affect the evolution of the layer. In addition, they showed that each simulated wake
exhibits self-similar behaviour; the wake spreading rates, however, depend on initial
conditions.

In the following section the governing equation, simulation method and parameters
are described. The numerical algorithm and the subgrid-stress model is validated,
and a grid-refinement study is shown. Then the turbulent statistics are presented,
followed by a discussion of the topology of the flow. The significance of these results
is discussed in some concluding remarks.

2. Problem formulation and simulation parameters
The governing equations for the LES of turbulent mixing layers are the incom-

pressible filtered Navier–Stokes equations, which describe the evolution of the large
scales:
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where P̄ is the pressure, and u1, u2 and u3 (or u, v and w) are the streamwise, spanwise
and cross-stream velocity components. All quantities are made dimensionless by the
velocity difference between the high- and low-speed sides of the layer, ∆U, and by its
momentum thickness at the initial time, θ0. The momentum thickness is defined as
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Here U = 〈u〉, and the angle brackets are an average over the plane of homogeneity
of the flow (the x, y-plane). The effect of the subgrid scales upon the resolved part
of turbulence appears in the subgrid-scale (SGS) stress term τij = uiuj − ūiūj , which
must be modelled. In the present study the SGS stresses are parameterized using a
dynamic eddy-viscosity model of the form
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3
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∂ūj

∂xi

)
. (2.5)

To determine the coefficient C , the Lagrangian averaging procedure proposed by
Meneveau, Lund & Cabot (1996) is used. This type of averaging eliminates sharp
fluctuations of the coefficient C which tend to destabilize the calculations, while it
preserves, to a certain degree, the locality of the model in space. The model has been
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Figure 1. Sketch of the computational domain.

found to give accurate predictions in turbulent and transitional flows and is, therefore,
well suited to the present numerical calculation that will encompass both flow regimes.
A complete analysis of the model can be found in Meneveau et al. (1996). Details of
the present implementation, together with an evaluation of its accuracy in equilibrium
and non-equilibrium flows, are given in Sarghini, Piomelli & Balaras (1999).

The governing equations (2.1) and (2.2) were integrated in time using an Adams–
Bashforth fractional-step method. Both advective and diffusive terms were treated
explicitly. The equation for the pressure was solved using a direct Poisson solver based
on fast Fourier transforms. All spatial derivatives were approximated by second-order
central differences on a staggered grid.

A schematic representation of the computational box is shown in figure 1. Periodic
boundary conditions were applied in the homogeneous streamwise and spanwise
directions. At the open boundaries in the cross-stream direction radiative boundary
conditions were used (Gresho & Sani 1987), which allow the flow to enter or exit the
computational domain without influencing the solution in the domain near the open
boundary.

In order to examine the effect of the initial conditions on the evolution of the
layer, two different cases were considered. Following Rogers & Moser (1994), one
calculation (Case 1) was started from a field created by taking two different realizations
of a turbulent boundary layer LES and bringing them together with their free
streams moving in opposite directions. This simulation resembles experiments in
which both boundary layers at the end of the splitter plate are turbulent, although
the mean vorticity profile across the dividing plane is different from that at the
end of splitter plates dividing experimental boundary layers. Another computation
(Case 3) was started from the same boundary layer flow fields; however, the three
velocity components were individually scrambled in a way that preserved their first-
and second-order moments, but removed all phase relationships between them. Such
simulations are similar to transitional simulations reported in the literature, albeit
with a much higher level of initial perturbations. This choice of initial conditions
allowed us to study the effect of boundary layer turbulence on the evolution of the
layer, especially at the initial stages of the development. The size of the computational
domain was chosen to match approximately that of the Rogers & Moser (1994) DNS.
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Case Domain size (×θ0) Grid size Initial conditions

1 Lx = 110, Ly = 28, Lz = 110 128× 64× 128 BL turbulence
2 Lx = 220, Ly = 56, Lz = 110 256× 128× 128 BL turbulence

2A Lx = 110, Ly = 56, Lz = 110 128× 128× 128 BL turbulence
2B Lx = 220, Ly = 28, Lz = 110 256× 64× 128 BL turbulence
3 Lx = 110, Ly = 28, Lz = 110 128× 64× 128 Random noise
4 Lx = 220, Ly = 56, Lz = 110 256× 128× 128 Random noise

Table 1. Computational parameters.

The boundary layer calculations were carried out using the upper part of the domain
shown in figure 1 with the same resolution. The Reynolds number, based on the
initial boundary-layer momentum thickness and free-stream velocity was Reθ = 330.
The choice of this low Reynolds number, in which the extent of the logarithmic layer
is very small, was part of our effort to simulate the conditions in the Rogers & Moser
(1994) DNS as closely as possible. In their study the initial boundary-layer Reynolds
number was Reθ = 300.

Both computations were repeated on a larger computational box, twice the size of
the first one in the streamwise and spanwise directions (Cases 2 and 4). In order to
determine which dimension of the computational box has the largest effect on the
layer evolution, two additional computations were conducted. The first (Case 2A),
has the same box length in the streamwise direction as Case 1 but is twice as large
in the spanwise direction. The situation is reversed (same box length in the spanwise
direction, twice as large in the streamwise one) for Case 2B. The grid resolution and
simulation parameters are summarized in table 1. The domain size in the cross-stream
directions as well as the numerical resolution were kept the same in all six cases,
and the initial mixing-layer Reynolds number was Reθ = 900. As the layer grows,
the Reynolds number of course increases; the maximum Reynolds number for the
calculations discussed here was Reθ = 3400.

Note that the parameters that affect the accuracy of the results (grid resolution
and subgrid-scale stress model) were the same for all the calculations. In this way,
once we have established confidence in the accuracy of the present computations by
comparison with the DNS data, we believe that the trends predicted by the LES can
be trusted, and meaningful conclusions can be drawn that are unaffected by modelling
and resolution errors.

3. Results
3.1. Simulation validation

In order to establish the independence of the results from numerical resolution,
subgrid-scale model and boundary condition treatment at the free-stream boundaries,
a series of computations was carried out prior to the six simulations mentioned in the
above paragraphs. Case 1, for which initial conditions and domain size are identical
to the reference DNS of Rogers & Moser (1994), was chosen to be the baseline
simulation. Computations with half (Case 1A) and double (Case 1B) resolution in
the streamwise and spanwise directions, compared to Case 1, were conducted. An
additional computation with domain size in the cross-stream direction half that of
Case 1, but with the same number of non-uniformly distributed grid points was
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Case Domain size (×θ0) Grid size

1 Lx = 110, Ly = 28, Lz = 110 128× 64× 128
1A Lx = 110, Ly = 28, Lz = 110 64× 32× 128
1B Lx = 110, Ly = 28, Lz = 110 256× 128× 128
1C Lx = 110, Ly = 28, Lz = 55 128× 64× 128

Table 2. Parameters for the grid refinement study.
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Figure 2. Time evolution of θ/θ0. •, DNS, Rogers & Moser (1994); , Case 1;
, Case 1A; , Case 1B; , Case 1C.

also performed (Case 1C). This last case, apart from revealing the influence of grid
resolution in the cross-stream plane, can demonstrate the effect of the location of the
free-stream boundaries in the evolution of the layer. A summary of all computational
parameters for the preliminary study is given in table 2.

In figure 2 the evolution of the normalized mixing-layer momentum thickness θ/θ0

(where θ0 is the initial momentum thickness) as a function of non-dimensional time
τ = t∆U/θ0 is shown for all cases. During the evolution of the coarse resolution case
(Case 1A) deviation from the expected linear behaviour can be observed. The slope
of the curve changes several times. This could be due to the fact that this resolution
is inadequate to resolve all essential structures present in the flow. In addition the
reduced spatial sample in this case can contribute to the difference. For these reasons,
and because a clear self-similar period could not be identified, this case was discarded.

For all other cases, after an initial adjustment period, θ/θ0 grows linearly with
time. The agreement with the reference DNS data is very good and the differences
between the baseline computation (Case 1) and the refined computations (Cases 1B
and 1C) are negligible. In the linear region the non-dimensional growth rate based
on the momentum thickness defined as

rθ =
1

∆U

dθ

dt
=

d(θ/θ0)

dτ
, (3.1)

is rθ = 0.014 for all three cases. This is identical with the value reported in Rogers &
Moser (1994) for their unforced simulation.

For all three cases (Cases 1, 1B and 1C) the extent of the self-similar period
was the same (see § 3.2 for details) and approximately extended over the interval
120 < τ < 200. The reference DNS self-similar period is different and extends over
a 105 < τ < 150 interval. Several reasons can explain this difference. First, the initial
condition in the DNS was taken from a calculation (Spalart 1988) in which a multiple-
scale procedure was applied to approximate the streamwise growth of the boundary



Self-similar states in turbulent mixing layers 9

0

0.02

0.04

0.06

0.08

–6 –4 –2 0 2 4 6
ê

–0.6

–0.4

–0.2

0

0.2

0.4

0.6
(a)

(b)

U
/¢

U
-q

2 .
t/

¢
U

2

Figure 3. (a) Space–time-averaged streamwise velocity in similarity coordinates; (b) space–time-
averaged resolved turbulent kinetic energy in similarity coordinates. •, DNS, Rogers & Moser
(1994); , Case 1; , Case 1B; , Case 1C.

layers; in the present simulations actual spatially developing LES were conducted
to create the boundary-layer fields. Secondly (and perhaps most importantly) some
degree of subjectivity is necessarily introduced when judging the extent of the self-
similar region, for example in the identification of the region in which the total
dissipation (shown later) is flat.

The time-averaged mean velocity U over this period and the corresponding resolved
turbulent kinetic energy 〈q2〉t = 〈ūiūi〉t plotted in similarity coordinates, are shown in
figure 3. In the following, while the angle brackets continue to denote the average
of a quantity over the (x, y)-plane, ensembles obtained by averaging over planes
and time are denoted by 〈 〉t. The predicted mean velocity profiles (figure 3a) are
nearly identical for all cases, and in very good agreement with the DNS data. The
turbulent kinetic energy 〈q2〉t (figure 3b) is slightly over-predicted, by approximately
8%, compared to the DNS data. The difference in the initial conditions could be
also responsible for this discrepancy. The fact, however, that this behaviour, was also
observed in well-resolved finite-difference simulations of wall bounded flows, indicates
that it could also be due to modelling errors. Nevertheless, this is a satisfactory result,
taking into account that the present simulations use only a fraction of the grid points
used in the DNS. The computations with different grid resolution, moreover, agree
well with each other. The maximum differences between them close to the centreline
are about 2%, which is probably within the uncertainty introduced by the size of the
statistical sample in these temporal simulations.

In summary, the resolution chosen for the baseline simulation (Case 1) is sufficient
to resolve adequately all large energy-carrying structures. Increasing the number of
grid points in the streamwise, spanwise and cross-stream directions by a factor of 2
appears to have minimal influence on the results. Furthermore, statistical quantities
agree well with the reference DNS data reported by Rogers & Moser (1994) (see also
§ 3.2 for a detailed comparison). This indicates that LES coupled with the Lagrangian
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Figure 4. Time evolution of (a) θ/θ0, (b) 500〈ε〉v/∆U3. •, DNS, Rogers & Moser (1994); ,
Case 1 (small box, boundary layer turbulence); , Case 2 (large box, boundary layer turbu-
lence); +, Case 2A (box doubled in the spanwise direction only); �, Case 2B (box doubled in the
streamwise direction only); , Case 3 (small box, random noise); , Case 4 (large box,
random noise).

dynamic eddy-viscosity model represents very accurately the energy exchange between
large and small scales in free shear layers. A similar conclusion was drawn by Vreman
et al. (1997). They examined the accuracy of several SGS models for the case of a
temporally evolving mixing layer, and found that dynamic eddy-viscosity models
predict all velocity statistics very accurately. In addition, the correct amount of SGS
dissipation was provided by the model, as demonstrated by the comparison of filtered
DNS energy spectra and turbulent kinetic energy dissipation with the LES data.
Having established this, in the following sections the effects of initial conditions and
domain size on the growth of the layer towards self-similarity, statistical quantities
and coherent structures will be examined in detail.

3.2. Self-similarity

After an initial adjustment period, turbulent mixing layers are known to evolve self-
similarly. As described above, the self-similar state is characterized by the linear growth
of the layer thickness and turbulent statistics that, when scaled by the appropriate
variables, are independent of the downstream position (or the position in time for
temporally evolving computations). A detailed evaluation of the degree to which these
self-similarity criteria are met in all the four cases simulated in this study has been
performed, and will be discussed next.

In figure 4(a) the evolution of the normalized mixing-layer momentum thickness
θ/θ0 as a function of non-dimensional time τ is shown. After an initial transient, θ/θ0

grows linearly with time in all cases. For Case 1 the layer starts to evolve linearly after
τ ' 70, with a non-dimensional growth-rate rθ = 0.014. When the domain is doubled
in the streamwise and spanwise directions (Case 2) the initial adjustment stage is
approximately the same as in Case 1 until τ ' 90; after this time, however, Case 2
grows at a faster rate, rθ = 0.015. This is an indication that the domain size can affect
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the layer growth, perhaps by restricting the large-structure evolution. In figure 4(a)
the evolution of the layer is also shown for Cases 2A and 2B where the computational
domain is doubled only in the spanwise or streamwise directions respectively. The
behaviour of θ/θ0 for Case 2A is very similar to that in Case 2, indicating that the
spanwise extent of the box is responsible for most of the difference. Case 2B is very
close to Case 1 (small domain) until τ ' 180. After this point a drastic change in
the slope can be observed, probably a product of interactions between quasi-two-
dimensional structures. This trend can also be observed in the dissipation that will be
discussed next.

The same trend, as far as the domain size is concerned, can be seen for Cases 3
and 4, which start from random noise. The growth rates are rθ = 0.012 and 0.0135
for Cases 3 and 4 respectively. In addition, for Cases 3 and 4 self-preservation is
established at a later time. This is more evident in figure 4(b), in which the integrated
rate of dissipation of turbulent kinetic energy,

〈ε〉v =
1

LxLy

∫ Lz

0

∫ Ly

0

∫ Lx

0

ε dx dy dz, ε = 2νS̄ij S̄ij − τij S̄ij , (3.2)

is shown. We recall that in equation (3.2) S̄ij is the resolved strain rate and τij is the
subgrid-scale stress. This quantity, which is scaled by ∆U3 becomes approximately
constant during the self-similar period (see Rogers & Moser 1994). The computations
started from random noise became self-similar at approximately τ ' 200, much later
than the beginning of self-similarity at τ ' 120 for the cases started from boundary
layer turbulence; 〈ε〉v also reaches a brief plateau at τ ' 120 in the Rogers & Moser
(1994) DNS. This result is consistent with the trends reported in experimental studies
of single- and two-stream mixing layers. For example, in the Bell & Mehta (1990)
experiment, in which the range of Reynolds numbers is comparable to the one in
the present computations, most turbulent quantities plotted in similarity coordinates
begin collapsing further downstream when the boundary layers at the edge of the
splitter plate are laminar, compared with cases in which the boundary layers are
turbulent.

In addition to the integrated quantities, the resolved velocity fluctuation second-
moment statistics have also been examined for self-similarity. In figure 5, iso-lines of
mean velocity and streamwise velocity variance 〈u′u′〉, are shown for the large-box,
random-noise case (Case 4). The horizontal axis is the non-dimensional time τ, and
the vertical one is the normalized similarity coordinate ξ(τ) = y/θ(τ). After an initial
adjustment period, the iso-lines become approximately parallel, indicating self-similar
evolution. Towards the end of the calculation, however, self-similarity breaks down
as illustrated by the fact that the iso-lines are no longer parallel. The length of the
self-similar period appears to be insensitive to the box size. Based on evolution of 〈ε〉v
one can conclude that the self-similar period is extended for both cases in the large
box. A detailed examination of the individual velocity statistics, however, shows a loss
of self-similar scaling for some of the statistics (the streamwise velocity fluctuations
for example). For this reason identical self-similar periods were considered when
comparing corresponding statistics during self-similar evolution. In the DNS study
of Rogers & Moser (1994) it was conjectured that the breakdown of self-similarity
is due to two-dimensionality of the spanwise rollers, resulting, in the late stages of
development, from the limited extent of the computational domain in the spanwise
direction. From the considerations above it is clear that other factors are involved
that require further investigation.
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Case Beginning End

1 (small box, BL turbulence) 125 200
2 (large box, BL turbulence) 125 200
3 (small box, random noise) 200 280
4 (large box, random noise) 200 280

Table 3. Averaging times for the various calculations.
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Figure 5. Time evolution of (a) U/∆U; (b) 〈u′u′〉/∆U2. Case 4 (large box, random noise).

To increase the statistical sample, turbulence statistics can be averaged over the
self-similar period of the evolution. Since the beginning and end of the self-similar
period are different for each statistical quantity, in the present work the averages were
taken over the period in which all quantities of interest appeared to have reached self-
similarity, as indicated by their iso-lines and by sample profiles. In table 3 the initial
and final times of the self-similar period for the four cases examined are reported.

3.3. Turbulence statistics

The time- and space-averaged mean-velocity profiles are shown in figure 6. The
velocity profiles for all four of the present LES cases are nearly identical and agree
well with the DNS data. In figure 7 the velocity variances are shown. Case 1 is in
generally good agreement with the DNS data, further confirming the accuracy of
LES that use the Lagrangian dynamic eddy-viscosity model, at least at the resolution
used here. The peak of the LES distribution of 〈u′u′〉t is greater than that of the DNS,
and both have somewhat anomalous shapes near the peaks. The LES distribution of
〈w′w′〉t is slightly higher than that of DNS all across the layer.

Initial conditions and domain size, however, affect the results significantly. The
large-domain calculations have higher fluctuation levels than the small box ones.
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In particular, the streamwise velocity variances for Cases 3 and 4, which are both
initialized with random noise and carried out on small and large computational
domains respectively, differ by approximately 21% at the centreline. For the spanwise
variances the additional effect of the differences between the turbulent and random
noise initial conditions can be clearly observed. The Case 2 peak is 38% greater
than that of Case 4. The combined effects give an approximately 83% increase
in the Case 2 peak compared to the Case 3 peak for 〈v′v′〉t. While some level of
discrepancy between the various data sets may be attributed to insufficient sample, the
differences mentioned here are far above the uncertainties of the present calculation.
The significant differences in the spanwise variance levels are a particularly important
indicator of more highly three-dimensional flow patterns in the cases initialized
with boundary-layer turbulence and in the large-domain calculations. This issue is
investigated further in § 3.4.

The statistical data presented here show that, although self-similar states are reached
independently of the initial conditions and parameters of the simulation, they are not
the same self-similar states. The initial conditions and the computational domain size
affect the turbulent statistics significantly. The substantial differences between the
spanwise velocity peak variances indicate that the self-similar states differ in their
degree of three-dimensionality. The large structures should be affected, a conclusion
that is supported to some extent by the experimental finding of Bell & Mehta (1990)
regarding the peak of secondary shear stress. To investigate this conjecture further,
the instantaneous velocity fields will be examined below to determine the structure of
the coherent vortices and how their evolution and dynamics are affected by the initial
conditions and computational domain size.

3.4. Coherent structures

Here we will examine the instantaneous velocity fields to illustrate how the statistical
differences observed before are reflected in a different flow structure in each of the
cases computed. We will first compare the two most extreme cases and show the
significantly different shapes of the coherent eddies during the self-similar period.
Then, we will examine the development of the layers into self-similarity, beginning
from their early stages. Thus, we will be able to highlight the effect of initial conditions
and domain size.

Several methods can be used in numerical simulations to visualize the coherent
eddies in a turbulent flow. Robinson (1991) compared various techniques, and found
that the pressure is effective in identifying the regions of strong rotation in vortex
cores. Hunt, Wray & Moin (1988) proposed the use of the second invariant of the
velocity-gradient tensor,

Q = −1

2

∂ui

∂xj

∂uj

∂xi
= − 1

2
(SijSij − ΩijΩij), (3.3)

where Sij and Ωij are, respectively, the strain-rate and rotation tensors (that is, the
symmetric and anti-symmetric parts of the velocity-gradient tensor). In the present
study both tensors are evaluated using resolved quantities. In regions where Q > 0 the
vorticity is significant and is due to rotation rather than to shear. We found that the
low-pressure regions highlight the rollers very effectively, but only the strongest rib
vortices are visualized well by this technique. Conversely, the Q > 0 criterion is more
effective at highlighting the rib vortices. Both criteria will be used in the following.

In figure 8, iso-surfaces of P and Q are shown for Cases 2 and 3 during the
self-similar period at θ/θ0 = 2.6. In this and following figures, the coordinates have
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Figure 8. Iso-surfaces of P and Q during the self-similar period (θ/θ0 = 2.6). (a) Case 3 (small
box, random noise); (b) Case 2 (large box, BL turbulence). The large domain is repeated twice in
the spanwise direction, and the small one three times in the spanwise and twice in the streamwise
directions, for clarity. The iso-surface levels are P = −0.04∆U2 (lighter grey) and Q = 0.08∆U2/θ2

0

(darker grey). In this and following figures, the coordinates have been normalized with the initial
momentum thickness.

been normalized with the initial momentum thickness of the layer and the small-box
calculations have been extended periodically in the x- and y-directions in order to
facilitate the comparison with the large-box ones. The size of the actual computational
box for both cases is marked with the dashed line in figure 8. A significant difference
is apparent between the two realizations. The small-domain, random-noise calculation
shows a fairly well-organized structure, even at this late stage of the evolution. A
regular array of quasi-two-dimensional rollers can be observed, with strong rib vortices
in the braid region. The large-domain, boundary-layer turbulence simulation, on the
other hand, displays a much more chaotic structure. The rollers are significantly
twisted, and the braid regions are essentially devoid of rib vortices. Only very weak
remnants of the coherent vorticity present in the ribs can be observed. The topological
features of the flow support the conjecture that the more highly three-dimensional
structure of the large-scale eddies in the latter case is responsible for the difference
in the similarity states, characterized most prominently by the different dissipation
levels and significantly higher spanwise-velocity variances discussed earlier.

The evolution of the layer in Case 3 (small box, random noise) is shown in figure 9.
Initially, the most unstable mode (given by the linear stability analysis with the mean
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Figure 9. Iso-surfaces of P and Q during the evolution of the mixing layer. Case 3 (small box,
random noise). (a) θ/θ0 = 1.1; (b) θ/θ0 = 1.6; (c) θ/θ0 = 2.6; (d) θ/θ0 = 3.4. The domain is repeated
twice in the spanwise and streamwise directions. The iso-surfaces of P are in lighter grey, those of Q
in the darker grey. Iso-surface levels are: (a) P = −0.02∆U2, Q = 0.01∆U2/θ2

0; (b) P = −0.06∆U2,
Q = 0.07∆U2/θ2

0; (c) P = −0.04∆U2, Q = 0.06∆U2/θ2
0; (d) P = −0.04∆U2, Q = 0.06∆U2/θ2

0 .

velocity profile as the base flow) begins to grow. The wavelength of this mode is
approximately 9θ0, which corresponds to an array of 25 spanwise rollers for the
domain shown in the figure. Pairings then begin to take place, and by the time
corresponding to θ/θ0 = 1.1, a spacing between rollers of approximately 10θ0 can be
observed.

An enlargement of the coherent structures for Case 3 and θ/θ0 = 1.1 is shown in
figure 10. Several rollers undergoing helical pairings can be seen (denoted by A in
figure 10, for instance). Some very regular, nearly two-dimensional rollers are also
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present. The rib vortices (one is indicated by B) span the braid region, wrapping
over the downstream roller and under the upstream one. Their streamwise vorticity
(figure 10b) can be of either sign, and no alternating pattern of positive and negative
rib vortices can be detected, as also observed by Comte et al. (1998). In the rollers,
very little streamwise vorticity is observed, as expected, except where they form kinks
and the spanwise component is turned into streamwise vorticity.

As time progresses, more pairings take place and the number of rollers present
in the domain decreases, as seen in figure 9. At θ/θ0 = 1.6 the spacing between
rollers is approximately 18.3θ0. Fairly strong rib vortices can be observed in the braid
regions, and these vortices are still present during the self-similar stages (θ/θ0 =
2.6) at which time a spacing between rollers of approximately 55θ0 is observed.
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Figure 11. Iso-surfaces of P and Q during the evolution of the mixing layer. Case 2 (large
box, boundary layer turbulence). (a) θ/θ0 = 1.1; (b) θ/θ0 = 1.6; (c) θ/θ0 = 2.6; (d) θ/θ0 = 3.4.
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Examination of the sequence of images leading to figure 9(c) reveals that the structure
of the flow at θ/θ0 = 2.6 results from the evolution of an array of six vortices
in which two pairs (the second and third and the fifth and six) approach each
other and undergo pairing. This leads to an increased distance between the pairing
vortices and the one immediately following them downstream. The increased distance
between the rollers causes the rib vortices to be stretched, decreasing their diameter
and making the viscous diffusion effects more significant. At the late stages of
development, θ/θ0 = 3.4, two very large two-dimensional rollers are established, and
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no coherent rib vortices can be discerned. At this time, the computational domain
appears to affect the results significantly. Breakdown of the self-similarity can be
attributed, for this case, to the rollers being forced by end effects to become more
two-dimensional, as conjectured by Hussain (1980) and also observed by Rogers &
Moser (1994).

A significantly different evolution can be observed for Case 2 (large box, boundary-
layer turbulence), in figure 11. First, during the initial stages, the flow is more
three-dimensional, weaker rollers are present, and their wavelength is greater than
in Case 3. It can be conjectured that this difference is due to the initial conditions.
When random noise is used, the energy spectrum at the initial stages is nearly flat.
This allows the inviscid instability to play a dominant role, and, as shown, spanwise
rollers are observed whose wavelength is that of the Kelvin–Helmholtz instability
and rib vortices form quickly. When boundary-layer turbulence is used, on the other
hand, the energy content of longer-wavelength structures is relatively more significant
(the energy spectrum at τ = 0 decays by approximately 4 orders of magnitude with
wavenumber). In this case, the inviscidly most unstable mode of the mean velocity
profile does not grow as rapidly, perhaps due to a saturation phenomenon or to the
early presence of coherent three-dimensional eddies, and initially the rib vortices are
not as well defined.

As time progresses, however, coherent rollers emerge, and a roller–braid pattern
can be observed in figure 11(b). This pattern is quite similar to the one seen in
figure 9(b), albeit less coherent in the spanwise direction. This decreased spanwise
coherence persists through the self-similar period (figure 11c) and continues after
the breakdown of similarity (figure 11d). A much more three-dimensional structure
persists compared with the random-noise calculation shown before.

In figure 12 the turbulent structures are shown for all cases during the initial
stages of the evolution (θ/θ0 = 1.1). Only minor differences are due to the box size.
For different box sizes the two cases initialized with boundary-layer turbulence look
very similar (figures 12a, c), as do those initialized with random noise (figures 12b, d).
By contrast, the initial conditions have a more profound effect at this early stage.
When boundary-layer turbulence is used the growth of the most unstable mode is
hindered by the presence of longer-wavelength eddies, and the flow develops three-
dimensionalities more rapidly than in the cases initialized with random noise.

During the self-similar period, on the other hand, the box size appears to have a
substantial effect on the evolution of the large structures, more significant than that of
the initial conditions. In figure 13 turbulent structures are shown for all cases at times
which correspond to θ/θ0 = 2.6. One can observe a more orderly structure for the
cases started from random noise (compare figures 13a and 13b, for instance), but a
more significant difference exists between the small-box and the large-box calculations.
In fact, even Case 4, which was initialized with random noise, has a significantly more
three-dimensional structure than either Cases 1 or 3. Consistent with the findings
of Rogers & Moser (1994) the present calculations show that if the diameter of the
rollers becomes comparable with their spanwise dimensions, the three-dimensionality
of the mixing layer is inhibited, and a more regular topology results.

4. Conclusions
Large-eddy simulations of temporally evolving, turbulent mixing layers have been

performed. The simulation parameters were designed with the intent of studying both
qualitatively and quantitatively the effect of initial conditions and domain size on
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Figure 12. Iso-surfaces of Q = 0.01∆U2/θ2
0 during the early times of the evolution (θ/θ0 = 1.1).

(a) Case 1 (small box, BL turbulence); (b) Case 3 (small box, random noise); (c) Case 2 (large box,
BL turbulence); (d) Case 4 (large box, random noise).

the evolution of the layer, and in particular on the self-similar states that resulted.
A baseline calculation was carried out that matched the parameters of the DNS of
Rogers & Moser (1994). The initial conditions were obtained from two realizations of
turbulent boundary layers that were juxtaposed with mean velocities going in opposite
directions; the layer was then allowed to grow in time. The mixing-layer momentum
thickness and the integral across the layer of the dissipation rate compare very
well with the DNS data. Likewise, the mean velocity distributions and the velocity
fluctuation variances compare well, except for small differences in the peak values of
the variances. Another calculation was carried out with the same initial conditions,
but in a domain with extent in the spanwise and streamwise directions doubled in
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Figure 13. Iso-surfaces of Q during the early times of the evolution (θ/θ0 = 2.6). (a) Case 1 (small
box, BL turbulence); (b) Case 3 (small box, random noise); (c) Case 2 (large box, BL turbulence);
(d) Case 4 (long box, random noise).

order to study the effects of the box size. To investigate the effects of the initial
conditions on the layer development, two additional calculations were carried out in
which the initial field was random, but with the same mean velocity and velocity
variances as in the turbulent boundary-layer initial condition case. Both small-box
and large-box calculations were performed.

Great care was used to determine whether self-similar states were achieved. In ad-
dition to the integral quantities, first- and second-order velocity component moments
were also examined. In all six cases simulated the mixing layers evolved into self-
similar states; the non-dimensional times they began and ended depended strongly,
however, on the initial conditions. Furthermore, the self-similar states reached were
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not the same. The turbulent statistics and the structure of the flow were significantly
affected both by the initial conditions and by the computational domain size. The
availability of three-dimensional unsteady fields allowed us to investigate these effects
more in detail than done in previous studies. In particular it was found that the initial
conditions and the size of the flow domain influence the shape of the coherent eddies
of the flow and its statistics. The differences persist throughout the layer development,
well into the self-similar period.

In general, the use of a smaller domain forces the spanwise rollers to be two-
dimensional during the late stages of the evolution. This results in a regular, well-
ordered flow structure. The initial conditions, not surprisingly, have an even stronger
effect, particularly on the initial stages of the evolution. The use of random noise lets
the Kelvin–Helmholtz instability emerge, leading to the early formation of a regular
array of spanwise rollers. When boundary-layer turbulence is used to initiate the layer,
on the other hand, the growth of the inviscid instability is inhibited by the presence
of lower-wavenumber modes with significant energy content. The result is a delayed
formation of the regular array and an initial structure that is more three-dimensional
and with longer wavelength. Although more notable during the early stages of the
layer development, the differences due to the initial conditions persist throughout the
self-similar period.

The differences in the structure of the turbulent flow field are reflected in the
statistics of the turbulent quantities, most notably the spanwise velocity fluctuation
variance v′v′, which is a measure of the three-dimensionality of the flow. The use of
the small computational domain resulted in a 20% decrease in this term; the use of
random noise to initialize the flow field reduces this term by approximately the same
amount.

One conclusion of this work is a confirmation of the experimental and theoretical
findings that, although mixing layers evolve into self-similar states, these states are not
unique, and may be affected by many factors. Several researchers have conjectured
the existence of multiple self-similar states. The possible effect of the domain size,
for instance, has been raised by Hussain (1980) for experiments and by Rogers &
Moser (1994) based on their DNS results. Numerous experiments have observed
differences due to the state of the boundary layer at the splitter plate. However, the
fact that experimental and DNS data, or data obtained from different experimental
configurations have been routinely compared implies a common belief that the
self-similar state is more or less unique. The present calculations are a conclusive
demonstration that this is not the case.

Of course, the above conclusions strictly hold only for temporally developing flows.
Spatially developing flows have differences in the sign of the mean vorticity and
in the inclination of the turbulent eddies near the trailing edge of the plate. In
experiments, the presence of the trailing edge may also affect the flow field. The
present calculations, however, at the very least suggest that caution should be used
when making comparisons between computational and physical experiments.

Financial support for this work was provided by the National Science Foundation
under Grant CTS-961862.
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